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ABSTRACT
With the ever-increasing urbanization process, the traffic jam has

become a common problem in the metropolises around the world,

making the traffic speed prediction a crucial and fundamental task.

This task is difficult due to the dynamic and intrinsic complexity

of the traffic environment in urban cities, yet the emergence of

crowd map query data sheds new light on it. In general, a burst

of crowd map queries for the same destination in a short duration

(called “hotspot”) could lead to traffic congestion. For example,

queries of the Capital Gym burst on weekend evenings lead to

traffic jams around the gym. However, unleashing the power of

crowd map queries is challenging due to the innate spatiotemporal

characteristics of the crowd queries.

To bridge the gap, this paper firstly discovers hotspots under-

lying crowd map queries. These discovered hotspots address the

spatiotemporal variations. Then Dest-ResNet (Deep spatiotemporal

Residual Network) is proposed for hotspot traffic speed prediction.

Dest-ResNet is a sequence learning framework that jointly deals

with two sequences in different modalities, i.e., the traffic speed

sequence and the query sequence. The main idea of Dest-ResNet

is to learn to explain and amend the errors caused when the uni-

modal information is applied individually. In this way, Dest-ResNet

addresses the temporal causal correlation between queries and the

traffic speed. As a result, Dest-ResNet shows a 30% relative boost

over the state-of-the-art methods on real-world datasets from Baidu

Map.
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1 INTRODUCTION
Accurate and real-time prediction of traffic speed is crucial and

fundamental for the successful deployment of intelligent trans-

portation systems (ITS) since traffic speed prediction is particularly

useful for many applications such as traffic network planning, route

guidance, and congestion avoidance [32]. However, traffic predic-

tion is challenging due to the dynamic and intrinsic complexity of

the traffic environment in cities.

A number of traditional methods have been proposed for traffic

prediction, such as ARIMA models [2, 27, 29, 30], RF [16] and SVR

[14]. Recently, some deep learning approaches have been proposed

for traffic prediction, such as stacked autoencoders (SAEs) [21],

deep belief network [13] and LSTM [22]. However, the traffic in

the urban area is highly dynamic and varies greatly on account of

diverse and complicated factors such as crowd activities. Due to the

intrinsic complexity and the lack of reliable data sources, previous

works ignored the social factors (e.g., festivals, crowd map queries),

which can potentially have a great impact on the traffic system.

With the explosive growth of mobile technology, map applica-

tions such as Baidu Map and Google Map provide an auxiliary rich

source of information for traffic speed prediction. Figure 1 shows

the average traffic speed and the number of queries for the Capital

Gym, Beijing on April 8, 2017. The query counts at time t is the
number of queries for the Capital Gym, and the estimated arrival

time of the queries is t . It can be observed that the query counts

(in red) are much more than average historical query counts (in

blue) at around 18:00, which account for a sudden drop in the traffic

speed. Note that a set of queries for the same destination issued at

a given time may lead to a traffic jam at their searched destination

after a while. Therefore, crowd map queries are able to provide an

early warning (46 minutes as shown in Table 1) of traffic jams for

many applications in ITS, especially for congestion avoidance.

More interestingly, the burst of crowdmap queries at a given time

usually indicates a “hotspot” being held at the searched destination

(the “hotspot” is “Fish Leong Concert” in Figure 1). Therefore, the

discovery of hotspots from a great many crowd map queries gives

a way to explain the reasons for traffic jams.

We aim to harness the power of crowd map queries for traf-

fic speed prediction. However, there are three challenges for the

https://doi.org/10.1145/3240508.3240656


Figure 1: The traffic speed (left) and crowd query counts
(right) around the Capital Gym, Beijing onApril 8, 2017. The
red “dot” denotes the current traffic speed (query counts)
while the blue “plus” represents the average historical traf-
fic speed (query counts). At 19:00, there is the Fish Leong
Concert in the Capital Gym.

organic integration of the queries and the road traffic speed: 1)

Spatiotemporal variation. The crowd map queries for the same

destination (e.g., the Capital Gym) can be issued at different source

locations and at different times by individual users; 2) Spatial im-
pact.A set of queries for the same destination from different source

locations have different impacts on the traffic speed of road seg-

ments towards the destination due to diverse routes from their

preferred directions; 3) Temporal causal correlation. For exam-

ple, a set of queries for the Capital Gym issued before 15:00 imply

the information of howmany users would arrive at the Capital Gym

after 15:00 (i.e., the temporal causal correlation) since users usually

inquire the traffic before heading towards their destinations.

Motivated by the idea that performance gain can be achieved by

appropriately integrating multi-modal information from different

sources, this paper attempts to predict future traffic speed via the

organic integration of the current road traffic speed and crowd map

queries. The intuition of this paper is that a set of explosive map

queries searching for the same destination at a given time generally

foresee a traffic jam after a while, and therefore the appropriate

integration of crowd map queries and traffic speed can boost the

performance of future traffic speed prediction. Technically, the

contributions of this paper can be summarized in three aspects.

• This paper proposes Dest-ResNet for hotspot traffic speed

prediction. Dest-ResNet is a sequence learning framework

that jointly deals with two sequences in different modalities,

i.e., the traffic speed sequence and the query sequence. The

motivation behind Dest-ResNet attempts to learn a residual

network to amend the errors caused when the unimodal in-

formation is learned individually. As a result, Dest-ResNet ad-

dresses the temporal causal correlation between queries and

the traffic speed. Furthermore, the generality of Dest-ResNet

makes it promising for many other multi-modal sequence

learning applications, e.g. text and speech.

• In order to address the spatiotemporal variation, this pa-

per proposes a hotspot discovery method from crowd map

queries. In this method, a grid-based map segmentation is

first utilized to group queries issued at similar geograph-

ical locations, then users’ arrival time is estimated w.r.t

their searched destinations mentioned in queries and an

arrival time tensor is constructed. Finally, the discovery of

the hotspots depends on the arrival time tensor.

• The queries for the same destination come from different

source locations have different impacts on the traffic speed

of road segments towards the destination. Therefore, this

paper proposes a query modeling algorithm to encode the

intricate spatial impacts between road segments and queries.

The rest of this paper is organized as follows. Sec. 2 presents

the related works of traffic prediction. In Sec. 3, we introduce the

problem definition and an overview of Dest-ResNet. Sec. 4 presents

the discovery of hotspots and the query modeling. In Sec. 5, we

describe the proposed Dest-RestNet in detail. The Sec. 6 presents

qualitative and quantitative results of hotspot discovery and traffic

speed prediction. Finally, we conclude this paper in Sec. 7.

2 RELATEDWORK
2.1 Traffic Prediction
As a critical component in ITS, the traffic (speed, flow, and density)

prediction has been explored by considerable research, in which

both parametric and non-parametric methods are popular. On the

one hand, autoregressive integrated moving average (ARIMA) [2],

which assumes the stationary of traffic speed sequence, has been

widely applied as a parametric technique for traffic prediction. The

ARIMA(0, 1, 1) model is found the most statistically significant for

all forecasting [17]. However, the inefficiency of the ARIMA model

restricts its suitability for the large-scale real-time application.

On the other hand, due to the nonlinearity and dynamics of

traffic, the non-parametric methods such as k-NN [4, 8, 31], RF [16],

SVR [14], OL-SVR [3], Bayesian network [26] and neural networks

[12, 23, 24, 28, 33] have been applied in a handful of studies. Never-

theless, due to the shallow architectures, these models fall behind

the recently deep learning approaches for traffic prediction, such

as stacked autoencoders (SAEs) [21] and deep belief network [13].

However, both of the deep learning models are tested on traffic data

collected from highways, where the traffic condition are relatively

stable. In contrast, our work is more general and robust for urban

traffic which has higher variance due to diverse and complicated

factors such as crowd activities. [22] simply use long short-term

memory network (LSTM) to predict traffic speed in an urban area.

Nonetheless, these methods mentioned above are naive without

considering the social factors (e.g., festivals, crowd map queries)

which potentially have a great impact on the traffic. The traffic data

we use from Baidu Map covers a large urban area and provides rich

online information to support more accurate traffic forecasting.

2.2 Traffic Prediction with Multi-modal Data
A few researchers have attempted to predict the traffic speed with

related multi-modal data. [10, 20] propose an optimization frame-

work to extract traffic speed indicators based on location-based

social media and incorporate them into traffic speed prediction



via linear regression. However, due to the nonlinearity of traffic,

linear regression for traffic prediction is insufficient. In addition,

[18, 19] use the concatenation and content attention to integrate

the crowd map queries for traffic prediction in an encoder-decoder

way. However, simply concatenation and attention are not enough.

Dest-ResNet is a sequence learning framework that attempts to

learn a residual network to amend the errors caused when the uni-

modal information is learned individually. As a result, Dest-ResNet

performs better than [18, 19].

3 PRELIMINARIES
3.1 Problem Definition
Let L = {l i |i = 1, 2, . . . ,K} be a collection of K road segments

in a given area. A road segment is a uniform section of a road.

The traffic speed of the road segment l ∈ L in a duration is vl =

(vl
1
,vl

2
, . . . ,vlt ), wherevlt is a scalar that represents the traffic speed

of the road segment l at time t .
Let Q = {qi |i = 1, 2, . . . ,N } be a corpus of users’ map query

records. Each record qi is defined by a tuple qi = (t is , si ,di ), where:
(1) t is is the starting time of the map query qi ; (2) si is the source
location ofqi ; (3)di is the destination. For simplicity, the superscript

is removed without confusion in the rest of this paper.

Specifically, for the road segment l , our goal is to maximize the

conditional probability of observing the future traffic speed slot

V f = (vlt+1,v
l
t+2, . . . ,v

l
t+w ) , given the previous traffic speed slot

V p = (vl
1
,vl

2
, . . . ,vlt ) and the map query records Q:

pθ (V f |V p ,Q) =
w∏

m=1
pθ (vt+m |v1,v2, . . . ,vt+m−1,Q<=t ) (1)

whereQ<=t = {qi |t is <= t},w is the prediction horizon and θ is the
model parameter. Given K road segments, our training objective is

to maximize the following log likelihood w.r.t. the model parameter

θ :

argmin

θ
− 1

K

K∑
k=1

log pθ (V f |V p ,Q). (2)

3.2 Overview of Dest-ResNet
Before presenting Dest-ResNet, we clarify three unique challenges

of modeling crowd map queries for traffic speed prediction, which

motivate the design of Dest-ResNet:

1) Spatiotemporal variation. The rawmap query data exhibits

considerable spatiotemporal variations. For example, a set of users’

query records for the same destination (e.g., the Capital Gym) can

be issued at different source locations and at different times by

different users. The spatiotemporal characteristics are beneficial

to traffic speed prediction since a burst of queries for the same

destination in a short duration in general leads to a traffic jam.

2) Spatial impact. A set of queries for the same destination

from different source locations have different impacts on the traffic

speed of road segments towards the destination. For examples, the

more users issued queries for a destination with similar routes, and

the heavier traffic jam can be caused across the corresponding road

segments towards the destination. On the contrary, other limited

queries for the destination will not cause heavy traffic across related

road segments since they will take different routes respectively.

How to effectively and efficiently model the spatial impact between

road segments and queries is challenging.

3) Temporal causal correlation. The map queries have in-

nately foreseeable characteristics for traffic speed prediction. For

example, a set of queries for the Capital Gym issued before 15:00

can be utilized to foresee the counts of users arriving at the Capital

Gym after 15:00 (i.e., the temporal causal correlation) since users

usually inquire the traffic before heading towards their destinations.

How to effectively capture the temporal causal correlation between

traffic speed and queries is very challenging.

From the challenges as mentioned above, we argue that people’s

activities in an urban city usually burst in specific geographical

regions during given time periods (e.g., attending a concert in the

Capital Gym atweekend evening), whichmeans that there are latent

spatiotemporal hotspots that lead to the bursts. Therefore, how to

identify a spatiotemporal hotspot (e.g., what kinds of activities

are going to trigger a traffic jam in a given time duration) is very

important. In Sec. 4.1, we design a hotspot discovery method to

detect the spatiotemporal hotspots and address the spatiotemporal

variation. The detected hotspots are used as basic units in the later

traffic speed prediction.

A set of queries for a particular destination from different source

locations will lead to complicated interactions among the road seg-

ments towards the destination. To capture the intricate interactions

among road segments from source locations to the destinations, a

query modeling method is devised to encode the spatial impacts of

road segments mentioned in queries at a given time in Sec. 4.2.

After discovering the spatiotemporal hotspots and modeling the

hotspot queries, we propose Dest-ResNet to effectively capture the

temporal causal correlations between traffic speed and queries in

Sec. 5. Dest-ResNet is a sequence learning framework that jointly

deals with two sequences in different modalities, i.e., the traffic

speed sequence and the query sequence. The main idea of Dest-

ResNet is to learn to explain and amend the errors in the unimodal

learning with the fusion of two modalities using a residual network.

4 HOTSPOT QUERY MODELING
The sudden explosion of people’s activities in a particular geograph-

ical region of an urban area during a given period, namely hotspot,

can be reflected by the burst of corresponding map queries issued

within a short period. In this section, we first introduce the discov-

ery of spatiotemporal hotspots and then the modeling of the spatial

interactions between queries and road segments.

4.1 Hotspot Discovery
As shown in Figure 2, the discovery of hotspots consists of following

steps:

1)Grid-basedmap segmentation. The map is first partitioned

into aX ×Y grid map. The width and height of a grid are both about

1 kilometer. For each query q = (ts , s,d), coordinates of the source
location (xs ,ys ) and the destination (xd ,yd ) can be calculated based
on the grid map.

2) Arrival time estimation. After one user issues a query for a
destination, the user’s arrival time td is estimated w.r.t the queried

destination according to the query mode with a speed of 30km/h (by
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Figure 2: The flowchart of the discovery of hotspots. A
set of map queries are segmented into geographical grids.
Then we estimate the arrival time when one user triggers
a query for a destination and construct the arrival time ten-
sor. A hotspot discovery algorithm is utilized to discover the
hotspots from the arrival time tensor.

car), 20km/h (by bus), 10km/h (by bike) or 3.6km/h (by walk). As a

result, a queryq can be represented asq = (ts , td , s,d,xs ,ys ,xd ,yd ).
Note that some users may not go to the destination that they

have searched. However, it is more likely that they will go to their

searched destinations if the queries are related to a public hotspot,

which is mostly event-driven and indicates the strong intention

of traveling from a large group of people. Otherwise, without the

intention, the burst of search queries in themap appwill not happen.

For example, there are many queries issued for the Capital Gym

as a destination and the estimated arrival time is around 18:00 on

April 8, 2017, in our collected map query dataset. Since the number

of such queries is much more than average historical data, we claim

that such queries are “hotspot” queries (in this case the hotspot is

“Fish Leong Concert” indeed).

3) Arrival time tensor construction. Given all queries C =
{qi |i = 1, 2, . . . ,N }, the arrival time tensor is constructed D =
{dx,y,t }, where x = 1, 2, . . . ,X , y = 1, 2, . . . ,Y , t = 1, 2, . . . ,T and

T is the total timestamps. dx,y,t is defined as

dx,y,t = |{qk |xkd = x ,ykd = y, t
k
d = t}| (3)

where | · | denotes the cardinality of a set.

4) Hotspot discovery. Before we discuss how to identify the

“hotspot”, we firstly introduce the definition of “moment”.

Definition 4.1 (Moment). A tuplem = (x ,y, t) is a moment if

dx,y,t−∆t > 0 (4)

dx,y,t − dx,y,t−∆t > ζ (5)

dx,y,t − dx,y,t−∆t
dx,y,t−∆t

> η (6)

Where ∆t is time duration (i.e., a week), ζ and η are hyper-

parameters that control the significance of the moment. .

Definition 4.2 (hotspot). A tuple h = (x ,y, ts , td ) is a hotspot if
td − ts > ϵ (7)

∀t ∈ [ts , td ], m = (x ,y, t) ∈ M (8)

m = (x ,y, ts − 1) <M ∧m = (x ,y, td + 1) <M (9)

WhereM denotes all the moments and ϵ is a hyper-parameter

that controls the length of each hotspot.

From the definitions of moment and hotspot query, the hotspot

is actually a local maximum interval of arrival time tensorD. Along

the time axis t of D, for each tuple (x ,y), we can find out all the

moments via Def. 4.1. For all the moments, the moments are then

merged into hotspots using Def. 4.2.

4.2 Hotspot Query Spatial Modeling
In this section, we introduce how to encode the impacts of the

hotspot queries. The modeling of the query depends on the query

counts and the spatial geographical region that the query will in-

fluence. The query counts feature Φc and query spatial feature Φs
are concatenated as the feature of query Φ.

Given a hotspot w.r.t a destination d , note that the queries for d
come from different places, thus each query has different impacts

on different road segments towards the destination d . Given all the

queries Q = {qi |i = 1, 2, . . . ,N } and road segments L = {l i |i =
1, 2, . . . ,K}, where K is the total number of road segments. The

query counts feature Φc (l , t) and the query spatial feature Φs (l , t)
on the road segment l at time t can be calculated by Algorithm 1.

In Algorithm 1, we argue that the query only influences a small

range around the destination at the arrival time. Therefore, for each

query, only the road segments within 1km (line 8, 9) towards the

destinations are taken into consideration. The function dist in line

12 calculates the Euclidean distance of a point and a segment. The

function f in line 13 is a decreasing function whose input is the

distance dl and output is the impact f (dl ) that the query q imposes

on the road segment l at time td . For simplicity, the exponential

function f (x) = exp(− xσ ) is applied, where σ is the impact factor.

Algorithm 1:QueryModeling Calculate the query feature

Input: A set of queries Q = {qi |i = 1, 2, . . . ,N }, a set of road
segments L = {l i |i = 1, 2, . . . ,K}

Output: The query counts feature Φc , the query spatial

feature Φs
1 Initialization: Φc ← 0, Φs ← 0
2 for each q ∈ Q do
3 // q = (ts , td , s,d,xs ,ys ,xd ,yd )
4 // return the longitude and latitude of a location

5 lonlats ← lonlat(s)
6 lonlatd ← lonlat(d)
7 seд← seдment(lonlats , lonlatd )
8 // return the set of road segments L within 1km

9 L← near_road_seдment(lonlatd )
10 for each l ∈ L do
11 lonlatl ← lonlat(l)
12 dl ← dist(lonlatl , seд)
13 Φs (l , td ) ← Φs (l , td ) + f (dl )
14 Φc (l , td ) ← Φc (l , td ) + 1

15 return Φc , Φs

5 DEST-RESNET
In this section, we firstly introduce the Seq2Seq network for traffic

speed prediction. Then we propose our Dest-ResNet.
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Figure 3: The structure of the Seq2Seq network Seq2Seq. The
bottom LSTM layer (colored red) encodes information in the
current traffic speed slot V c while the second LSTM layer
(colored green) decodes the hidden representation of V c to
predict the future traffic speed slot V̂ f .

5.1 Seq2Seq Network
For each hotspot, given the historical traffic speed of selected k road

segments, we aim to forecast their future traffic speed. Specifically,

given the current traffic speed slotV c = (vt−w+1,vt−w+2, . . . ,vt )
of k road segments, we predict their future traffic speed slot V̂ f =

(v̂t+1, v̂t+2, . . . , v̂t+w ), wherevt = (v1t ,v2t , . . . ,vkt )T is the traffic

speed of k road segments at time t ,w is the prediction horizon.

As shown in Figure 3, a sequence to sequence (Seq2Seq) network

is applied to model the traffic speed. It consists of two LSTM[11]

layers. The bottom LSTM layer (colored red) encodes information

in the current traffic speed slot V c
while the second LSTM layer

(colored green) decodes the encoding information of V c
to predict

the future traffic speed slot V̂ f
.

5.2 Dest-ResNet

Φf

V p Seq2Seq Ṽ c ⊖ Ec Res Êf

V c Seq2Seq Ṽ f ⊕ V̂ f

Figure 4: The structure of the proposed Dest-ResNet. The
network Seq2Seq is used for traffic speed prediction while
the network Res is utilized to predict the residual.

The map queries issued by users at a certain time can be utilized

to foresee the traffic speed around the queried destination after

a while. Considering a set of queries triggered earlier than 15:00

whose destinations are all around the Capital Gym, the arrival

time towards the destinations can be estimated as described in

Sec. 4.1. The number of queries implies the information of how

many individuals would arrive at the Capital Gym at the estimated

arrival time, which would be beneficial to traffic speed prediction

around the Capital Gym. Note that here only the map queries for

the Capital Gym issued earlier than 15:00 is utilized to guarantee

the foreseeable characteristic of map queries.

Additionally, there would be some residuals between the ground

truth traffic speed and the predicted traffic speed when the Seq2Seq

LSTM LSTM
. . .

LSTM

LSTM LSTM
. . .

LSTM

vt−w+1vt−w+2 . . . vt

et−w+1 et−w+2 . . . et

ϕt+1 ϕt+2 . . . ϕt+w

êt+1 êt+2 . . . êt+w

V c

Ec

Φf

Predicted future residual slot Êf

Figure 5: The structure of the residual network Res. The bot-
tomLSTM layer(colored red) encodes information in the cur-
rent traffic speed slotV c , the current residual slot Ec and the
future query slot Φf . While the second LSTM layer (colored
green) decodes the hidden representation to predict the fu-
ture residual slot Êf .

network is applied for traffic speed prediction individually. Besides

the travel distance, some social factors in our real-world may cause

the residuals, such as festivals, drivers’ habits and so on, especially

for hotspot traffic speed prediction. Therefore, learning the residuals

with social factors (e.g., map query) can be utilized to boost the

performance of traffic speed prediction.

Figure 4 shows the structure of Dest-ResNet. Given the previous

traffic speed slot V p = (vt−2w+1,vt−2w+2, . . . ,vt−w ), the current
traffic speed slotV c

and the future query slotΦf = (ϕt+1,ϕt+2, . . . ,
ϕt+w ), the future traffic speed slot V̂ f = (v̂t+1, v̂t+2, . . . , v̂t+w )
can be obtained by:

Ṽ c = Seq2Seq(V p ) (10)

Ec = V c − Ṽ c
(11)

Êf = Res(V c ,Ec ,Φf ) (12)

Ṽ f = Seq2Seq(V c ) (13)

V̂ f = Ṽ f + Êf (14)

where (1) Ṽ c
is the estimated current traffic speed slot; (2) Ec is the

current residual slot; (3) Êf is the predicted residual slot; (4) Res is

a residual network shown in Figure 5; (5) Ṽ f
is the estimated future

traffic speed slot; (6) V̂ f
is the predicted future traffic speed slot.

Note that the future query slot Φf
is calculated using Algorithm 1

according to the “future” arrival time of the queries.

To make a long story short, the main parts of Dest-ResNet are the

Seq2Seq network Seq2Seq and residual network Res . The Seq2Seq
network is applied to predict the traffic speed given historical traffic

speed data only. While the residual network is tasked with learning

to predict the errors between Seq2Seq prediction and ground truth

in the next horizon w . The queries, which are long-term foresee-

able, are used to explain and predict the residuals. These predicted

residuals Êf can then be utilized to amend the future traffic speed

slot V̂ f = Ṽ f + Êf from the estimated future traffic speed slot Ṽ f
.

6 EXPERIMENTS
6.1 Datasets



Table 1: Statistics of the query dataset.

Items Numbers

Filtered queries 114,658,750

Query words 17,210,732

Average distance/query 12km

Average travel time/query 46 minutes

6.1.1 Data Pre-processing. Our experiments are based on

two real-world datasets: 1) traffic speed dataset, which is used

for traffic speed prediction. It is collected in Beijing, China from

Baidu Map, with a time period from April 1, 2017, to May 31, 2017.

This dataset contains about 800 thousands of road segments. The

traffic speed of each road segment is recorded per minute. Since the

traffic speed data is from real-world urban areas, the traffic speed

lights would have a significant impact on the traffic speed, leading

to the traffic speed varies greatly. For instance, the traffic speed may

differ 20km/h between two consecutive minutes. To make the traffic

speed predictable, for each road segment, the traffic speed per 5

minutes is average and zero-phase digital filtering [9] is utilized to

smooth the traffic speed; and 2) map query dataset, which is used

for hotspot discovery and traffic speed prediction. The spatial and

temporal ranges of this dataset are the same as the traffic speed

dataset with the statistics in Table 1.

There are two modes of map queries in the Baidu Map, “location

search” (searching for a certain place) and “route search” (searching

a route from one place to another). Each query records the user ID

(anonymized), search timestamp, coordinate of the current location,

coordinate and query word of the source location (in “route search”),

coordinate and query word of the destination. Note that if the query

mode is “location search”, the source location is the same as the

current location. It is preprocessed as follows:

• To eliminate redundancy, only the last query can be retained

if a single user created several queries in 10 minutes.

• It is assumed that the users are more likely to go to their

searched destinations if they are currently close to the searched

source locations. Thus the queries whose current locations

are 2km away from the source locations are eliminated.

• Since the searched source locations are within 2km from

current locations, the starting time is estimated according to

the distance between source locations and current locations,

with a speed of 3.6km/h (by walk).

• To address the time variations, the starting (and arrival) times

of the queries are converted to [0, 17, 568) by calculating its

offset (every 5 minutes) w.r.t. 12:00 AM, April 1, 2017.

6.1.2 Hotspot Discovery. Let ∆t = 2, 016 (12×24×7, a week),
ζ = 100, η = 0.2, ϵ = 12(an hour). Along the time axis t in arrival

time tensor D, for each tuple (x ,y), we find out all the moments

using Def.4.1. all the moments are merged into hotspots using

Def.4.2. At last, 932 hotspots are discovered.

Table 2 shows some hotspots that are discovered from the query

dataset. Several kinds of hotspots are presented, including concerts,

forums, places of interest and anniversaries. For each hotspot, there

are many slightly different query words (e.g., “South Gate of the

Capital Gym” and “Park of the Capital Gym”). One can find that

the query counts are much more than that in last week, and the top

1 query word is highly related to the hotspot. Not only that, more

than 80% of the query counts comes from the top 1 query word.

6.1.3 Correlation Analysis. As the first step towards predict-

ing traffic speed with map query data, the correlation between map

query counts and the traffic speed in the same hotspot is tested.

For each hotspot, the average traffic speed of the k (k = 5) road

segments with a resolution of 5 minutes is used. And we stack the

traffic speed and map query counts of all the hotspots, respectively.

As both of the variables are both non-linear, the standard linear

Pearson correlation coefficient is not appropriate for our study.

Spearman’s rank correlation coefficient is applied, and the result

ρ = −0.57 with a P-value= 4.64 × e−14 indicate that there is a

strong negative correlation between the average traffic speed and

the query counts, making it promising to predict traffic speed with

the map query data.

6.2 Hotspot Traffic Speed Prediction
6.2.1 Baselines. On one hand, for the traditionalmachine learn-

ing methods, due to the computation complexity of ARIMA [2],

it is not suitable for a large-scale dataset. Thus we compared our

method with the state-of-the-art approaches: RF [16] and SVR [14].

On the other hand, for the deep learning approaches, we com-

pared our method with two RNN methods (LSTM and GRU [6]) in

terms of traffic speed prediction. Furthermore, different variants

of our Dest-ResNet have been trained for traffic speed prediction.

Dest-ResNet considers the query features and the residual network.

The query features consist of two kinds of features, the query counts

feature (shortly, “C”), and the query spatial feature (shortly, “S”)

extracted with Algorithm 1. In addition, “R” represents the residual

network Res for simplicity. In a word, we compare Dest-ResNet

with the following methods:

• Random forests (RF) [16]: RF is a traditionalmachine learning

method for regression, often used for traffic speed prediction;

• Support vector regression (SVR) [14]: SVR is a version of

SVM for regression, widely used for traffic speed prediction;

• Seq2Seq: The Seq2Seq network Seq2Seq whose input is the

current traffic speed slot and output is the future traffic speed

slot;

• Gated Recurrent Unit (GRU) [6]: GRU is a variant of RNN.We

compare Dest-ResNet with GRU which replaces the LSTM

layers in the Seq2Seq network with GRU layers;

• Seq2Seq+P: The same as the Seq2Seq network, except for

the input which consists of previous traffic speed slot and

current traffic speed slot;

• Dest-ResNet(C): “S” and “R” are removed from our Dest-

ResNet, and only “C” is retained;

• Dest-ResNet(R): “C” and “S” are removed from our Dest-

ResNet, and only “R” is retained;

• Dest-ResNet(S): “C” and “R” are removed from our Dest-

ResNet, and only “S” is retained;

• Dest-ResNet(CR): “S” is removed from our Dest-ResNet, and

“C” and “R” are retained;

• Dest-ResNet(CS): “R” is removed from our Dest-ResNet, and

“C” and “S” are retained;

• Dest-ResNet(RS): “C” is removed from our Dest-ResNet, and

“S” and “R” are retained.



Table 2: Examples of the discovered hotspots from the query dataset, where Time, Grid, QC_cur, QC_last, Top1 query word,
Top1_qc, and Description represents the start time and end time, grid coordinates, query counts in the current time period,
query counts in the same period of last week, top 1 query word, top 1 query counts and the description of each hotspot,
respectively.

Time Grid QC_cur QC_last Top1 query word Top1_qc Description

2017-04-08 14:00-20:00 (26, 39) 3431 417 Capital Gym 2724 Fish Leong Concert

2017-04-11 08:00-10:00 (24, 38) 447 93 Beijing Shangri-La Restaurant 304 IBM Data Scientist Forum

2017-04-15 08:00-16:00 (13, 47) 4551 2202 Beijing Botanical Garden 3849 Spring outing

2017-04-15 16:00-20:00 (21, 34) 2173 207 Letv sports center 1831 Chou Chuan-huing Concert

2017-04-30 08:00-18:00 (22, 47) 7283 3607 Summer Palace 7149 Summer Palace (May Day)

2017-04-30 08:00-18:00 (26, 46) 3691 1582 Tsinghua University 3102 106th Anniversary of THU

6.2.2 Parameter Settings. Given the current traffic speed slot

V c = (vt−w+1,vt−w+2, . . . ,vt ), note that the standard RF and SVR
can only predict the traffic speed vt+1 at time step t + 1, whose

goals are slightly different from our sequence to sequence model.

So on the testing stage, we treat prior forecasts as “observations”

and utilize them for subsequent forecasts, that is, we firstly use

these models to output v̂t+1, then we usevt−w+2, . . . ,vt and the

predicted v̂t+1 to output v̂t+2. Finally, we have the predicted future

traffic speed slot V̂ f = (v̂t+1, v̂t+2, . . . , v̂t+w ). Allowing for that

the traffic patterns of different kinds of hotspots vary, each hotspot

discovered is classified into 16 classes according to its top 1 query

word. For each kind of hotspot, we choose 70% (30%) as our training

(test) set. The training (test) set consists of 656 (276) hotspots. For

each hotspot, we setw = 12 and k = 5 in our experiments, in other

words, we predict the traffic speed of 5 road segments for next hour

meanwhile. These 5 road segments are selected according to the

their distances to the center of the hotspot queries’ destinations. As

a result, the total number of the traffic speed samples is 238,830 and

the corresponding number of queries is 2,336,114. We set σ = 100m

in Algorithm 1.

The parameter settings of RF and SVR are motivated by [7],

which is also a recent traffic prediction work. For RF, the number

of trees in the forests and the maximum depth are both 10. For

SVR, we set C = 1, ϵ = 0.1 and use RBF kernel. The scikit-learn

[25] is used to implement RF and SVR. For Seq2Seq (or GRU), we

use the Seq2Seq network in Figure 3 which consists of two LSTM

(or GRU) layers. This network is pre-trained for finetuning the

other models. For Seq2Seq+P, we use the same structure as the

Seq2Seq network except for the length of input is 2w = w + w
(w for previous traffic speed slot and w for current traffic speed

slot). For Dest-ResNet(C), Dest-ResNet(S) and Dest-ResNet(CS),

we use the counts (and/or spatial) feature of the query to fine-

tune the Seq2Seq network. Specifically, we use another sequence

to sequence network to learn the representation of query slot

Φf = (ϕt+1,ϕt+2, . . . ,ϕt+w ), and concatenate the representation

of query slot and the representation of current traffic speed slot

V c
before decoding them into V̂ f = (v̂t+1, v̂t+2, . . . , v̂t+w ). For

Dest-ResNet(R), Dest-ResNet(CR), and Dest-ResNet(RS), we fine-

tune Seq2Seq, Dest-ResNet(C) and Dest-ResNet(S) with the residual

network Res , respectively.
All the networks are trained with the stochastic gradient using

the Adam optimizer [15] with a learning rate of 0.001. The squared

loss and linear activation function a(x) = x are utilized to train all

Dest-ResNet

Seq2Seq

GRU

SVR

RF

2.93

3.01

2.13

2.02

1.51

20.44

20.89

11.67

11.11

7.75 MSE

MAE

Figure 6: Best performance of different methods for traf-
fic speed prediction. Lower MSE (MAE) means better perfor-
mance. (Best viewed in the electronic version)

the weights. The dimension of hidden units in LSTM (or GRU) is

tuned by using a grid of parameter settings (8, 16, 32, . . . ) without

dropout and the best performance is reported. All the networks are

implemented based on the publicly available framework Keras [5]

with TensorFlow [1] as the backend, and are trained on a single

NVIDIA GeForce GTX TITAN X GPU with 12GB memory. It takes

the model about 2 hours to train and less 1 minute to test.

6.2.3 Evaluation Metrics. Two widely used evaluation met-

rics for traffic speed prediction are used, namely mean square error

(MSE) and mean absolute error (MAE), which are defined as

MSE =
1

T

T∑
t=1
(vt − v̂t )2 (15)

MAE =
1

T

T∑
t=1
|vt − v̂t | (16)

wherevt and v̂t are the ground truth traffic speed and the predicted

traffic speed at time t , respectively.

6.2.4 Results. Firstly, the effectiveness of our proposed Dest-

ResNe for traffic speed prediction is verified. Figure 6 demonstrates

the prediction performance of different methods in terms of MSE

and MAE. It can be observed that deep learning based methods(e.g.,

GRU, Seq2Seq andDest-ResNet) outperform traditionalmethods(e.g.,

RF and SVR). This is because deep learning based methods have

stronger expressive power to encode the complicated traffic speed

condition. It is shown that Seq2Seq is slightly better than GRU, the

difference between them is the sequence layer (LSTM for Seq2Seq,
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Figure 7: Traffic speed prediction with different methods.
(Best viewed in the electronic version)

Table 3: Comparison of all the variants of our Dest-ResNet
with the different number of hidden units. The results with
the best performance are marked in bold.

Methods

Num units=8 Num units=16 Num units=32

MSE MAE MSE MAE MSE MAE

Seq2Seq 14.34 2.41 11.11 2.02 11.32 2.02

Seq2Seq+P 13.98 2.35 10.97 1.97 10.86 1.95

Dest-ResNet(C) 12.80 2.35 9.13 1.90 9.25 1.75

Dest-ResNet(R) 14.26 2.36 9.84 1.83 8.54 1.78

Dest-ResNet(S) 11.56 2.20 8.76 1.81 8.76 1.68

Dest-ResNet(CR) 12.02 2.25 8.81 1.85 8.93 1.74

Dest-ResNet(CS) 11.74 2.21 8.35 1.74 8.71 1.65

Dest-ResNet(RS) 11.37 2.15 7.69 1.69 7.93 1.55

Dest-ResNet 10.92 2.08 7.66 1.62 7.75 1.51

GRU for GRU), so the LSTM is chosen as the sequence layer in our

Seq2Seq network. Among all three deep learning based methods,

our proposed Dest-ResNet performs the best. Compared to Seq2Seq,

Dest-ResNet achieves 30% and 25% relative improvement in terms

of MSE and MAE, respectively. This improvement can be explained

by the fact that Dest-ResNet leverages the query features extracted

from map query data as well as the residual network. Moreover,

Figure 7 shows some qualitative traffic speed prediction samples of

different methods. For simplicity, the performance of the variants

is not presented.

Secondly, the effectiveness of the residual network “R” and query

features are verified, which comprise of query counts feature “C”

and the query spatial feature “S” extracted using Algorithm 1. As

mentioned in Sec. 6.2.2, we tune the number of hidden units in the

LSTM. Table 3 compares the performance of all the variants with the

different number of hidden units. As the same as Dest-ResNet(R),

Seq2Seq+P also use the previous and current traffic speed to pre-

dict future traffic speed. However, the improvement is limited with

respect to Seq2Seq, which indicates the effectiveness of the residual

network “R”. The performances of Dest-ResNet(C), Dest-ResNet(R),

and Dest-ResNet(S) are better than Seq2Seq, which demonstrate the

effectiveness of the query counts feature “C”, residual network “R”,

and the query spatial feature “S”, respectively. Similar observations

can be obtained compared to Dest-ResNet(CR), Dest-ResNet(CS)

and Dest-ResNet(RS). As a result, our proposed Dest-ResNet which

considers the query counts feature “C”, residual network “R”, and

the query spatial feature “S” achieves the best performance. Further-

more, as the number of hidden units increases, the performance is
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Figure 8: Traffic speed prediction with Dest-ResNet(CS) and
Dest-ResNet. The shadow area is the predicted residual us-
ing the residual network. It is utilized to amend the fu-
ture traffic speed (in green) from the estimated future traffic
speed (in red). (Best viewed in the electronic version)

improving. However, beyond 32 hidden units, there are diminishing

returns — overfitting occurs with a large number of hidden units.

Finally, the effectiveness of the residual network is demonstrated

in Figure 8, where we show two samples of traffic speed prediction

with/without the residual network. The shadow area, which is

predicted by the residual network, is utilized to amend the future

traffic speed (in green) from the estimated future traffic speed (in

red).

7 CONCLUSION
We have studied the problem of how to model the map query and

utilize it to boost hotspot traffic speed prediction. Towards this

end, we firstly propose a hotspot discovery module to detect the

representative spatiotemporal hotspots from massive map query

data, addressing the spatiotemporal variations. Furthermore, an

algorithm is devised to model the intricate spatial impact between

queries and road segments. At last, we propose Dest-ResNet which

integrates the sequence learning from different modalities. The

residual network of Dest-ResNet encodes the information of map

queries and utilize it to explain and amend the errors of the original

traffic speed prediction, addressing the temporal casual correlation

between the map queries and traffic speed. As a result, Dest-ResNet

achieves 30% relative improvement over the state-of-the-art meth-

ods on real-world datasets from Baidu Map. As for future work, it

is interesting to discover and recommend the hotspots for users,

and provide traffic speed prediction with Dest-ResNet in practical

applications.
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