深度学习:一起玩转TensorLayer (Deep Learning Using TensorLayer)
Published in 电子工业出版社 (Publishing House of Electronics Industry), 2018
Useful Links: [Press] [Github]
前言 Preface
深度学习已经成为了当今人工智能发展的主要助力,国务院印发的《新一代人工智能发展规划》中表示,2020年我国人工智能核心产业规模超过1500亿元,带动相关产业规模超过1万亿元;2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。
为此产业界急需大量实用性人才,而深度学习是一门理论与工程相结合的科学,本书将以通俗易懂的方式讲解深度学习技术,并辅以实践教学。本书同时面向深度学习初学者、进阶者及工程师,内容涵盖了全连接网络、自编码器、卷积神经网络、递归神经网络、深度增强学习、生成对抗网络等,并附有多个进阶实例教程。与传统深度学习书籍相比,本书有以下特点。
本书注重实践,科研人员和工程师都希望有一个深度学习开发工具可以同时满足学术界和产业界的需求,可让最新的人工智能算法很快地从实验室投入到产品中。为此我们开发了深度学习框架—— TensorLayer。读者可以从零基础开始学习掌握目前最新的深度学习技术。更多关于TensorLayer的设计思路请见第1章。帝国理工数据科学院(Data Science Institute)是TensorLayer的发起单位和主要开发单位,郭毅可教授是该项目领导。
本书对深度学习的最新方法进行了更多的阐述,特别是生成对抗网络方面,该研究方向已在无监督学习方面取得重大突破,并已经开始在产业界产生非常大的影响。本书还介绍及使用了多种新的反卷积方法,如子像素卷积和缩放卷积。
研究深度学习需要做大量的实验,本书在讲解技术的同时传授了很多实验经验。除神经网络外,本书还讲解了数据预处理、数据后加工、训练、服务架设等任务,这些都是搭建整个学习系统和产品的基本工作流。
本书编著方式与其他同类书籍不同,是由TensorLayer中文社区众包完成的,由董豪统稿。本书代码除第3章和第14章实例五外都由董豪提供,本书第1章由杨光、莫元汉和郭毅可执笔;第2章教学部分由杨光执笔,实现讲解部分由董豪执笔;第3章由幺忠玮执笔;第4章由林一鸣执笔;第5章由张敬卿和王剑虹执笔;第6章由袁航执笔;第7章由于思淼执笔;第8章与第12章实例三由张敬卿执笔;第9章、第10章实例一和第13章实例四由董豪执笔;第11章实例二讲解部分由杨光执笔,实现部分由董豪执笔;第14章实例五由陈竑执笔。本书图片整理由出版社、吴超、赵婧楠和种道涵完成,封面设计由出版社和王盼完成。
虽然本书的作者都是一线科研人员和技术人员,但是不妥和错误之处在所难免,真诚地希望有关专家和读者给予批评指正,以便再版时修改。最后,在计算机技术发展非常快的今天,书籍里的知识更新速度有限,建议读者多参与社区讨论交流。本书代码例子使用TensorFlow1.2和TensorLayer1.5.3,Python3在Ubuntu下测试。由于TensorFlow和TensorLayer在不断地更新,若出现兼容性问题,请到各章节给定的网址链接中获取最新的代码。 本书作者
2018年1月